Skip to content

Index

Run Out#

Role#

run_out is the module that decelerates and stops for dynamic obstacles such as pedestrians and bicycles.

brief

Activation Timing#

This module is activated if launch_run_out becomes true

Inner-workings / Algorithms#

Flow chart#

uml diagram

Preprocess path#

Calculate the expected target velocity for ego vehicle#

Calculate the expected target velocity for the ego vehicle path to calculate time to collision with obstacles more precisely. The expected target velocity is calculated with motion velocity smoother module by using current velocity, current acceleration and velocity limits directed by the map and external API.

brief

Extend the path#

The path is extended by the length of base link to front to consider obstacles after the goal.

Trim path from ego position#

The path is trimmed from ego position to a certain distance to reduce calculation time. Trimmed distance is specified by parameter of detection_distance.

Preprocess obstacles#

Create data of abstracted dynamic obstacle#

This module can handle multiple types of obstacles by creating abstracted dynamic obstacle data layer. Currently we have 3 types of detection method (Object, ObjectWithoutPath, Points) to create abstracted obstacle data.

Abstracted dynamic obstacle#

Abstracted obstacle data has following information.

Name Type Description
pose geometry_msgs::msg::Pose pose of the obstacle
classifications std::vector<autoware_auto_perception_msgs::msg::ObjectClassification> classifications with probability
shape autoware_auto_perception_msgs::msg::Shape shape of the obstacle
predicted_paths std::vector<DynamicObstacle::PredictedPath> predicted paths with confidence. this data doesn't have time step because we use minimum and maximum velocity instead.
min_velocity_mps float minimum velocity of the obstacle. specified by parameter of dynamic_obstacle.min_vel_kmph
max_velocity_mps float maximum velocity of the obstacle. specified by parameter of dynamic_obstacle.max_vel_kmph

Enter the maximum/minimum velocity of the object as a parameter, adding enough margin to the expected velocity. This parameter is used to create polygons for collision detection.

Future work: Determine the maximum/minimum velocity from the estimated velocity with covariance of the object

3 types of detection method#

We have 3 types of detection method to meet different safety and availability requirements. The characteristics of them are shown in the table below. Method of Object has high availability (less false positive) because it detects only objects whose predicted path is on the lane. However, sometimes it is not safe because perception may fail to detect obstacles or generate incorrect predicted paths. On the other hand, method of Points has high safety (less false negative) because it uses pointcloud as input. Since points don't have a predicted path, the path that moves in the direction normal to the path of ego vehicle is considered to be the predicted path of abstracted dynamic obstacle data. However, without proper adjustment of filter of points, it may detect a lot of points and it will result in very low availability. Method of ObjectWithoutPath has the characteristics of an intermediate of Object and Points.

Method Description
Object use an object with the predicted path for collision detection.
ObjectWithoutPath use an object but not use the predicted path for collision detection. replace the path assuming that an object jumps out to the lane at specified velocity.
Points use filtered points for collision detection. the path is created assuming that points jump out to the lane. points are regarded as an small circular shaped obstacle.

brief

Exclude obstacles outside of partition#

This module can exclude the obstacles outside of partition such as guardrail, fence, and wall. We need lanelet map that has the information of partition to use this feature. By this feature, we can reduce unnecessary deceleration by obstacles that are unlikely to jump out to the lane. You can choose whether to use this feature by parameter of use_partition_lanelet.

brief

Collision detection#

Detect collision with dynamic obstacles#

Along the ego vehicle path, determine the points where collision detection is to be performed for each detection_span.

The travel times to the each points are calculated from the expected target velocity.

brief

For the each points, collision detection is performed using the footprint polygon of the ego vehicle and the polygon of the predicted location of the obstacles. The predicted location of the obstacles is described as rectangle or polygon that has the range calculated by min velocity, max velocity and the ego vehicle's travel time to the point. If the input type of the dynamic obstacle is Points, the obstacle shape is defined as a small cylinder.

brief

Multiple points are detected as collision points because collision detection is calculated between two polygons. So we select the point that is on the same side as the obstacle and close to ego vehicle as the collision point.

brief

Insert velocity#

Insert velocity to decelerate for obstacles#

If the collision is detected, stop point is inserted on distance of base link to front + stop margin from the selected collision point. The base link to front means the distance between base_link (center of rear-wheel axis) and front of the car. Stop margin is determined by the parameter of stop_margin.

brief

Insert velocity to approach the obstacles#

If you select the method of Points or ObjectWithoutPath, sometimes ego keeps stopping in front of the obstacle. To avoid this problem, This feature has option to approach the obstacle with slow velocity after stopping. If the parameter of approaching.enable is set to true, ego will approach the obstacle after ego stopped for state.stop_time_thresh seconds. The maximum velocity of approaching can be specified by the parameter of approaching.limit_vel_kmph. The decision to approach the obstacle is determined by a simple state transition as following image.

brief

uml diagram

Limit velocity with specified jerk and acc limit#

The maximum slowdown velocity is calculated in order not to slowdown too much. See the Occlusion Spot document for more details. You can choose whether to use this feature by parameter of slow_down_limit.enable.

Module Parameters#

Parameter Type Description
detection_method string [-] candidate: Object, ObjectWithoutPath, Points
use_partition_lanelet bool [-] whether to use partition lanelet map data
specify_decel_jerk bool [-] whether to specify jerk when ego decelerates
stop_margin double [m] the vehicle decelerates to be able to stop with this margin
passing_margin double [m] the vehicle begins to accelerate if the vehicle's front in predicted position is ahead of the obstacle + this margin
deceleration_jerk double [m/s^3] ego decelerates with this jerk when stopping for obstacles
detection_distance double [m] ahead distance from ego to detect the obstacles
detection_span double [m] calculate collision with this span to reduce calculation time
min_vel_ego_kmph double [km/h] min velocity to calculate time to collision
Parameter /detection_area Type Description
margin_ahead double [m] ahead margin for detection area polygon
margin_behind double [m] behind margin for detection area polygon
Parameter /dynamic_obstacle Type Description
min_vel_kmph double [km/h] minimum velocity for dynamic obstacles
max_vel_kmph double [km/h] maximum velocity for dynamic obstacles
diameter double [m] diameter of obstacles. used for creating dynamic obstacles from points
height double [m] height of obstacles. used for creating dynamic obstacles from points
max_prediction_time double [sec] create predicted path until this time
time_step double [sec] time step for each path step. used for creating dynamic obstacles from points or objects without path
points_interval double [m] divide obstacle points into groups with this interval, and detect only lateral nearest point. used only for Points method
Parameter /approaching Type Description
enable bool [-] whether to enable approaching after stopping
margin double [m] distance on how close ego approaches the obstacle
limit_vel_kmph double [km/h] limit velocity for approaching after stopping
Parameter /state Type Description
stop_thresh double [m/s] threshold to decide if ego is stopping
stop_time_thresh double [sec] threshold for stopping time to transit to approaching state
disable_approach_dist double [m] end the approaching state if distance to the obstacle is longer than this value
keep_approach_duration double [sec] keep approach state for this duration to avoid chattering of state transition
Parameter /slow_down_limit Type Description
enable bool [-] whether to enable to limit velocity with max jerk and acc
max_jerk double [m/s^3] minimum jerk deceleration for safe brake.
max_acc double [m/s^2] minimum accel deceleration for safe brake.

Future extensions / Unimplemented parts#

  • Calculate obstacle's min velocity and max velocity from covariance
  • Detect collisions with polygon object
  • Handle the case when the predicted path of obstacles are not straight line
    • Currently collision check is calculated based on the assumption that the predicted path of the obstacle is a straight line